The Culmination of a Multi-year Collaborative Effort

1000343_10201990475388401_2134217229_nThe image to the left is of RMRS-GTR-310. For me, this manuscript is the culmination of a multi-year collaborative effort with the USFS Southwestern Region and RMRS intended to provide land managers with a better understanding of forest structure, composition, and processes as they analyze and make decisions about restoration of frequent-fire forests. The document synthesizes relevant forest science, provides implementation suggestions, and communicates the broad range of benefits associated with the restoration of frequent-fire forests.

Citation:
Reynolds, Richard T.; Sánchez Meador, Andrew J.; Youtz, James A.; Nicolet, Tessa; Matonis, Megan S.; Jackson, Patrick L.; DeLorenzo, Donald G.; Graves, Andrew D. 2013. Restoring composition and structure in Southwestern frequent-fire forests: A science-based framework for improving ecosystem resiliency. Gen. Tech. Rep. RMRS-GTR-310. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 76 p. Download

 Abstract:
Ponderosa pine and dry mixed-conifer forests in the Southwest United States are experiencing, or have become increasingly susceptible to, large-scale severe wildfire, insect, and disease episodes resulting in altered plant and animal demographics, reduced productivity and biodiversity, and impaired ecosystem processes and functions. We present a management framework based on a synthesis of science on forest ecology and management, reference conditions, and lessons learned during implementations of our restoration framework. Our framework focuses on the restoration of key elements similar to the historical composition and structure of vegetation in these forests: (1) species composition; (2) groups of trees; (3) scattered individual trees; (4) grass-forb-shrub interspaces; (5) snags, logs, and woody debris; and (6) variation in the arrangements of these elements in space and time. Our framework informs management strategies that can improve the resiliency of frequent-fire forests and facilitate the resumption of characteristic ecosystem processes and functions by restoring the composition, structure, and spatial patterns of vegetation. We believe restoration of key compositional and structural elements on a per-site basis will restore resiliency of frequent-fire forests in the Southwest, and thereby position them to better resist, and adapt to, future disturbances and climates.

Facebooktwittergoogle_plusredditpinterestlinkedinmailFacebooktwittergoogle_plusredditpinterestlinkedinmail