“Early View” is like Christmas!

I’m extremely happy to say that the following papers are now out in early view – the first two papers are the results of Eryn Schineder’s and Kyle Rodman’s thesis work. For those who may not know, Eryn’s work focused on spatial patterns and reference conditions at the Barney Springs site south of Flagstaff, a pure ponderosa pine site on limestone soils that has managed to avoid being harvested. Truly a unique system to study… Kyle’s work also focused on spatial patterns and reference conditions, but in dry mixed-conifer sites along the Mogollon Rim. He presents a variety of reference attributes that will be interesting and applicable to many of you currently working in dry mixed-conifer forests (especially this findings regarding long-term changes in species composition). I’m am really proud of these two and both works are significant contributions to our knowledge regarding HRV and long-term vegetation dynamics. In case you’re wondering, Eryn and Kyle are both currently pursuing PhDs – Eryn with Andrew Larson at Univ. of Montana and Kyle at Univ. of Colorado at Boulder with Tom Veblen.

Lastly, the third paper presents an idea that Daniel Laughlin, Rob Strahan, Dave Huffman and I have been developing for a while now. In this paper we present a functional (species trait-based) approach to restoring resilient ecosystems in light of changing environmental conditions and explore it’s application in dry mixed-conifer forests (study sites at Black Mesa and on the north rim of Grand Canyon NP). Really exciting work that I’m happy to have been a part of!!!


A couple of new wildfire-related publications

Over the past year I have had the opportunity to work a several wildfire-related projects, two of which are now available from their publishers. The first focuses on the effectiveness of fuel treatments following the Wallow  (2011) fire and the second focuses on long-term forest dynamics under alternative climate and management scenarios following the Rodeo-Chediski (2002) fire. These were both great projects and I think collectively they provide quite a bit of insight into the abilities of managers and agencies to mitigate wildfire effects (during and after) and highlight the effects treatments have on resiliency and given different climate scenarios.

Screenshot 2014-10-02 07.12.24 Amy E. M. Waltz, Michael T. Stoddard, Elizabeth L. Kalies, Judith D. Springer, David W. Huffman, and A.J. Sánchez Meador. 2014. Effectiveness of fuel reduction treatments: assessing metrics of forest resiliency and wildfire severity after the Wallow Fire, AZ. Forest Ecology and Management 334(15): 43-52. http://dx.doi.org/10.1016/j.foreco.2014.08.026

Abstract: Landscape-scale wildfire has occurred in higher frequencies across the planet. Fuel reduction treatments to fire-adapted systems have been shown to reduce the impact to human values-at-risk. However, few studies have examined if these treatments contribute to ecosystem resilience, or the capacity of a system to absorb perturbation and return to a similar set of structures or processes. We defined short-term metrics of resiliency to test the hypothesis that fuel reduction treatments in mixed conifer forests increased a fire-adapted system’s resiliency to uncharacteristically severe wildfire. In addition, we tested the hypothesis that fuel reduction treatments reduced burn severity, thereby increasing protection for adjacent human communities. We examined a mixed conifer forested landscape in the southwestern U.S. that was burned by a landscape-scale “mega-fire” in 2011; fuel reduction treatments had been established around communities in the 10 years prior to the fire. Fire effects were highly variable in both treated and untreated forests. However, analysis of resiliency metrics showed that: (a) treated units retained a higher proportion of large trees and had post-fire tree densities within the natural range of variability; (b) the understory herbaceous community had significantly higher cover of native grasses in the treated units, but no significant differences in nonnative cover between treated and untreated units; and (c) high-severity patch sizes were significantly larger in untreated stands and covered a larger proportion of the landscape than historical reference conditions. Fire severity, as defined by overstory mortality and basal area loss, was significantly lower in treated units; on average, trees killed per hectare in untreated units was six times the number of trees killed in treated units. Fuel reduction treatments simultaneously reduced fire severity and enhanced short-term metrics of ecosystem resiliency to uncharacteristically severe fire.

 Screenshot 2014-10-02 07.12.15 Alicia Azpeleta Tarancón, Peter Z. Fulé, Kristen L. Shive, Carolyn H. Sieg, Andrew Sánchez Meador, and Barbara Strom 2014. Simulating post-wildfire forest trajectories under alternative climate and management scenarios. Ecological Applications 24:1626–1637. http://dx.doi.org/10.1890/13-1787.1

Abstract: Post-fire predictions of forest recovery under future climate change and management actions are necessary for forest managers to make decisions about treatments. We applied the Climate-Forest Vegetation Simulator (Climate-FVS), a new version of a widely used forest management model, to compare alternative climate and management scenarios in a severely burned multispecies forest of Arizona, USA. The incorporation of seven combinations of General Circulation Models (GCM) and emissions scenarios altered long-term (100 years) predictions of future forest condition compared to a No Climate Change (NCC) scenario, which forecast a gradual increase to high levels of forest density and carbon stock. In contrast, emissions scenarios that included continued high greenhouse gas releases led to near-complete deforestation by 2111. GCM-emissions scenario combinations that were less severe reduced forest structure and carbon stock relative to NCC. Fuel reduction treatments that had been applied prior to the severe wildfire did have persistent effects, especially under NCC, but were overwhelmed by increasingly severe climate change. We tested six management strategies aimed at sustaining future forests: prescribed burning at 5, 10, or 20-year intervals, thinning 40% or 60% of stand basal area, and no treatment. Severe climate change led to deforestation under all management regimes, but important differences emerged under the moderate scenarios: treatments that included regular prescribed burning fostered low density, wildfire-resistant forests composed of the naturally dominant species, ponderosa pine. Non-fire treatments under moderate climate change were forecast to become dense and susceptible to severe wildfire, with a shift to dominance by sprouting species. Current U.S. forest management requires modeling of future scenarios but does not mandate consideration of climate change effects. However, this study showed substantial differences in model outputs depending on climate and management actions. Managers should incorporate climate change into the process of analyzing the environmental effects of alternative actions.


Congratulations Greg Black!

NCUR-logo-WebWe here at quantitativeecology.org are happy to announce that our own Greg Black will be presenting his work at the National Conference on Undergraduate Research (NCUR) at the University of Kentucky in April. Greg’s submission, titled “Stand structure and composition in treatment areas following the 2012 Grand Fire” was chosen from more than 4,000 submissions and we are proud of Greg’s work and contributions to his field of study. Our lab is sincerely pleased that Greg will have the opportunity to present his work to peers, faculty, and staff from around the world!


The Culmination of a Multi-year Collaborative Effort

1000343_10201990475388401_2134217229_nThe image to the left is of RMRS-GTR-310. For me, this manuscript is the culmination of a multi-year collaborative effort with the USFS Southwestern Region and RMRS intended to provide land managers with a better understanding of forest structure, composition, and processes as they analyze and make decisions about restoration of frequent-fire forests. The document synthesizes relevant forest science, provides implementation suggestions, and communicates the broad range of benefits associated with the restoration of frequent-fire forests.

Reynolds, Richard T.; Sánchez Meador, Andrew J.; Youtz, James A.; Nicolet, Tessa; Matonis, Megan S.; Jackson, Patrick L.; DeLorenzo, Donald G.; Graves, Andrew D. 2013. Restoring composition and structure in Southwestern frequent-fire forests: A science-based framework for improving ecosystem resiliency. Gen. Tech. Rep. RMRS-GTR-310. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 76 p. Download

Ponderosa pine and dry mixed-conifer forests in the Southwest United States are experiencing, or have become increasingly susceptible to, large-scale severe wildfire, insect, and disease episodes resulting in altered plant and animal demographics, reduced productivity and biodiversity, and impaired ecosystem processes and functions. We present a management framework based on a synthesis of science on forest ecology and management, reference conditions, and lessons learned during implementations of our restoration framework. Our framework focuses on the restoration of key elements similar to the historical composition and structure of vegetation in these forests: (1) species composition; (2) groups of trees; (3) scattered individual trees; (4) grass-forb-shrub interspaces; (5) snags, logs, and woody debris; and (6) variation in the arrangements of these elements in space and time. Our framework informs management strategies that can improve the resiliency of frequent-fire forests and facilitate the resumption of characteristic ecosystem processes and functions by restoring the composition, structure, and spatial patterns of vegetation. We believe restoration of key compositional and structural elements on a per-site basis will restore resiliency of frequent-fire forests in the Southwest, and thereby position them to better resist, and adapt to, future disturbances and climates.


Continued Scounting of Mixed-Conifer Forests along the Mogollon Rim, AZ

DSC_0040Friday of this past week we (myself, one of my graduate students, members of the ERI Outreach Staff and a Forest Service representative) spent the day scouting potential research sites along the Mogollon Rim, in the mixed-conifer forest type. These forests generally occur at elevations between 8000 to 10,000 feet and under natural conditions, their higher site productivity and open structure facilitates leads to a more diverse (as compared to pondersa pine) understory.

Depending on location and often aspect, Douglas-fir, white fir, blue spruce, and southwestern white pine will dominate the tree canopy, often with ponderosa pine clearly dominating on warmer slopes. Quaking aspen, bigtooth maple, and Gambel oak are also prominent in these forests. Fire histories in mixed-conifer forests vary with forest composition, landscape characteristics and human intervention, but have been shown to be mainly frequent surface fires to infrequent, patchy (yet small) crown fires with return intervals averaging around 10-15 years.

If all goes as planned (when does it?), this could be the location of a new LEARN site!

DSC_0063 DSC_0057 DSC_0043 DSC_0025 DSC_0087 DSC_0047


Tree-Ring Chronologies and Mixed Conifer – Chocolate and Peanut Butter?

Last week I allowed myself a few moments of respite and managed to develop a standard tree RWI (ring with index) chronology (and resulting residuals) for the Black Mesa site near Payson, AZ. I used dplR and R and the expreience was awesome. Beginning to end, the whole exercise took maybe 10-15 minutes, and thta includes figureing what format best fit our data. The resulting figure(s) show a smoothing spline (red) to highlight high-frequency (decadal) variability and the sample depth (dashed) is plotted on the right-hand axis; but the best part is the two harvests (releases evident in 1960s and 1980s) stick out like a sore thumb.

However, now I find myself wondering if these data also happen to capture the recent moratlity (post-2000) event observed throughout western forests and how hard would it be to remove the local climate effect…?


Mixed-conifer research site on the San Fransisco Peaks, AZ – Site I

Over the past two weeks, myself and several ERI staff members were able to establish six one hectare plots in a warm/dry mixed-conifer forest on the southwestern slope of the San Fransisco Peaks, within the boundary of a study area previously examined by Heinlein et al. (2005).

Mixed conifer forests of the American Southwest have been impacted similarly to other conifer forests, yet reference condition information vital to restoration are lacking. This is especially true with respect to spatial patterns, long term dynamics and the influence of site productivity; information critical to informing management decisions. It has been shown that landscape structures such as meadows, discrete tree patches, large trees, and aspen communities have declined as an interlocking understory of shade-tolerant and fire intolerant tree species increased and expanded their ranges, yet the spatial and temporal dynamics associated with these changes are rarely quantified and poorly understood. Our study (Site I of VI in a long-term project) strives to capitalize on existing study sites where fire chronologies have been collected and published, thus allowing for a more complete setting for describing changes in structure and composition.

Overall, this particular site (and the subsequent plot locations) is perfect! The site captures a nice range of contemporary density and species composition, elevation, aspect, and general condition. The site is clearly dominated by ponderosa pine and douglas-fir, but we did encounter quite a bit of large southwestern white pine, aspen, and even a couple of juniper and corkbark fir. Charred evidence and fire scars were everywhere, and the amount of fir and white pine regeneration is impressive…


Prezi on overview of LEARN

Yesterday, I presented an invited talk to the Kaibab National Forest of an overview of the ERI’s LEARN (Long-term Ecological Assessment and Restoration Network). LEARN includes ten permanently marked, well-documented research sites where researchers have used standardized methods of data collection to facilitate long-term monitoring. The LEARN allows researchers and land managers to compare the effects of forest restoration treatments (and in one case, fuels reduction) on all aspects of ecosystem dynamics across a variety of forest types from pinyon-juniper to ponderosa pine to dry mixed conifer. Research on LEARN sites has been tremendously productive (over 120 peer-reviewed manuscripts), and has proven influential in informing larger, landscape-scale restoration treatments across the Southwest. Check it out…


What happens when you lock several economist in a room?

Last year, the Office of Wildland Fire in the Department of Interior requested that the Ecological Restoration Institute at Northern Arizona University analyze available information and provide insights into wildland fire economics and fuel treatment eeffectiveness. Somehow, I was dragged into it and this is one of the resulting products associated with that endeavor…